Real-time Capable Nonlinear Model Predictive Controller Design for The Upper Stage of a Launch Vehicle

نویسندگان

  • Yunus Emre ARSLANTAS
  • Thimo OEHLSCHLÄGEL
چکیده

In this paper, a real-time capable Nonlinear Model Predictive Controller (NMPC) is implemented for the attitude control of an upper stage launch vehicle with liquid propellant. A mass spring model is used as an analogy to simulate the disturbance generated by the sloshing propellant. For the implementation of the NMPC, an optimal control problem (OCP) is defined with finite time horizon. The objective function is minimized while satisfying constraints on the control inputs. The resulting OCP is transcribed using single shooting method to parametrize the control inputs using uniform discretization points. The continuous control inputs are obtained by linear interpolation. A dedicated discretization algorithm in FORTRAN is coupled with a solver which used quasi-Newton algorithm to generate solutions fast. Approximation of the Hessian matrix is used to reduce computational requirements. Furthermore, the algorithm can perform parallel computation of the derivatives of the objective function with respect to optimization variables. This results in a real-time capability of generating solutions in the order of milliseconds for each iteration. The algorithm is applied for attitude maneuver and disturbance rejection for the upper stage of a launch vehicle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Predictive Controller Design for a Novel Moving Mass Controlled Bi-rotor UAV

This paper presents design and implementation of Model Based Predictive Controller (MPC) for a novel Bi-Rotor Moving Mass Controlled (MMC) Unmanned Aerial Vehicle (UAV). Due to the strict constrained control inputs in this type of UAV, it is necessary to take into account the constrained controller design and un-constrained control methods are not applicable. MPC controller which is designed ba...

متن کامل

Model Predictive Control System Design using ARMAX Identification Method for Car-following Behavior

The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...

متن کامل

Nonlinear Optimal Control Techniques Applied to a Launch Vehicle Autopilot

This paper presents an application of the nonlinear optimal control techniques to the design of launch vehicle autopilots. The optimal control is given by the solution to the Hamilton-Jacobi-Bellman (HJB) equation, which in this case cannot be solved explicity. A method based upon Successive Galerkin Approximation (SGA), is used to obtain an approximate optimal solution. Simulation results invo...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015